Comparison of Responsive Behaviors of Two Cinnamic Acid Derivatives Containing Carbazolyl Triphenylethylene

Xi-qi Zhang • Zhen-guo Chi • Bing-jia Xu • Hai-yin Li • Wei Zhou • Xiao-fang Li • Yi Zhang • Si-wei Liu •
Jia-rui Xu

Received: 8 April 2010 / Accepted: 22 June 2010 /Published online: 1 July 2010
(C) Springer Science+Business Media, LLC 2010

Abstract

Two cinnamic acid derivatives (CPA and CPC) containing carbazolyl triphenylethylene moiety have been synthesized and characterized. The two derivatives possessed aggregation-induced emission property. They exhibited different and interesting responsive behaviors to solvents, water and metal ions. Considering the structural differences between the two derivatives resulting in different interactions between their molecules and the various media was proposed as a possible explanation for these observations. The intermolecular interactions of CPC were much stronger than those of CPA, which promoted molecular association through intermolecular hydrogen bonding to form multimers. It was found that CPC and CPA exhibited high sensitivity to K^{+}and Mn^{2+}, respectively. It is suggested that the derivatives have potential technological applications in chemosensor fields.

Keywords Cinnamic acid derivative - Responsive behavior Chemosensor Carbazolyl triphenylethylene • Aggregation-induced emission

Electronic supplementary material The online version of this article (doi:10.1007/s10895-010-0697-y) contains supplementary material, which is available to authorized users.

[^0]
Introduction

Fluorescent chemosensors are receiving increasing attention due to their potential applications in analytical chemistry, the life sciences, medical analysis, and environmental monitoring [1-7]. As a new class of fluorescent materials, aggregation-induced emission (AIE) materials that are highly luminescent in their aggregation states have attracted much interest owing to their unique properties [8]. Tang et al. have very recently employed a hexaphenylsilole derivative to detect DNA and proteins by making use of the AIE phenomenon [9, 10].

Recently, a series of compounds containing triphenylethylene moiety with AIE properties and favorable thermal stabilities have been developed in our laboratory [11, 12]. In order to improve the responsibility of the compounds to better use as a chemosensor, we introduced the cinnamic acid unit to the compounds and obtained cinnamic acid derivatives. In our previous study, we have found that a cinnamic acid derivative, CPC, exhibited interesting fluorescence multi-responses to solvents, water and metal ions [13]. In this paper, we will further report the different responsive behaviors resulting from their special chemical structures between CPC and the other derivative, CPA.

Experimental

Materials and methods

All reagents and chemicals were purchased from AlfaAesar company and used as received. Analytical grade DMF was purified by distillation under an inert nitrogen atmosphere. Ultra-pure water was used in the experiments. All other solvents were analytical grade and purchased
from Guangzhou Dongzheng Company and used without further purification. Intermediates 1 and 2 were synthesized according to our previous procedure [11-13].
${ }^{1} \mathrm{H}-\mathrm{NMR}$ was measured on a Mercury-Plus 300 spectrometer and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Varian INOVA500NB spectrometer with chemical shifts reported as ppm (in CDCl_{3} or $\mathrm{DMSO}-\mathrm{d}_{6}$, TMS as internal standard). Mass spectra were measured on a Thermo MAT95XPHRMS spectrometer or a Thermo DSQ-MS spectrometer. Elemental analyses were performed with an Elementar Vario EL Elemental Analyzer. UV-Vis spectra were obtained using a Shimadzu UV-Vis-NIR Spectrophotometer UV-3150. Fluorescence spectra were determined on a Shimadzu RF-5301PC spectrometer with a slit width of 3 nm for both excitation and emission. The fluorescent compounds and the metal ions of acetate were all dissolved in DMF in proper proportion.

Synthesis of compound 3

$2(3.3 \mathrm{~g}, 5 \mathrm{mmol})$ and 4-formylphenylboronic acid (0.75 g , $5 \mathrm{mmol})$ were dissolved in the mixture of toluene $(20 \mathrm{~mL})$, TBAB (1 g) and 2 M potassium carbonate aqueous solution $(5 \mathrm{~mL})$. The mixture was stirred at room temperature for 0.5 h under Ar gas, followed by addition of tetrakis (triphenylphosphine)palladium $(0.01 \mathrm{~g})$ and then heated to $90{ }^{\circ} \mathrm{C}$ for 24 h . After this, the mixture was poured into water and extracted three times with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was loaded onto a silica gel column with n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1: 1, v / v)$ as eluent to give $3\left(1.9 \mathrm{~g}, 55 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 7.24$ (s, 1H), 7.26-7.37 (m, 6H), $7.42-7.79$ (m, 20H), 7.95 (d, 2H), 8.13-8.22 (m, 4H), 10.05 (s, 1H); MS (EI) calcd. for $\mathrm{C}_{51} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$ 690, found 690. Anal. Calc. for $\mathrm{C}_{51} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$: C 88.67, H 4.96, N 4.06. Found: C 88.63, H 4.91, N 4.10.

Synthesis of the compound CPA

To a stirred solution of $3(0.45 \mathrm{~g}, 0.65 \mathrm{mmol})$ and ethyl 2(diethoxyphosphoryl) acetate ($0.16 \mathrm{~g}, 0.71 \mathrm{mmol}$) in anhydrous THF (10 mL) at room temperature, t-BuOK ($0.24 \mathrm{~g}, 2.14 \mathrm{mmol}$) was added under Ar gas. After stirred for 12 h at room temperature, the resulting mixture was acidified by 5 mL concentrated HCl and poured into 50 mL water. And then, the mixture was extracted three times with methylene chloride. The organic layer was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was loaded onto a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /methanol $(20: 1, v / v)$ as eluent to give 0.25 g yellow solid CPA (52% yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$) δ ppm: 7.24-7.35 (m, 6H),
7.41-7.78 (m, 24H), $7.98(\mathrm{~d}, 1 \mathrm{H}), 8.25(\mathrm{q}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm}: 167.47,143.27,140.95$, $140.82,140.41,140.02,139.94,138.82,137.70,136.34$, $133.38,131.64,130.09,129.87,128.78,128.63,128.50$, 127.36, 126.76, 126.51, 126.26, 122.77, 120.50, 120.10, 119.10, 109.65; IR (KBr) v: 3044, 1682, 1623, 1599, 1513, $1477,1451,1421,1361,1334,1315,1229,1170,835,816$, $748,723 \mathrm{~cm}^{-1}$; MS (FAB) calcd. for $\mathrm{C}_{53} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} 733$, found 733; Anal. Calc. for $\mathrm{C}_{53} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 86.86, H 4.95, N 3.82. Found: C 86.81, H 4.92, N 3.79.

Synthesis of the compound CPC
$3(0.33 \mathrm{~g}, 0.48 \mathrm{mmol})$, cyanoacetic acid $(0.08 \mathrm{~g}, 0.94 \mathrm{mmol})$, and piperidine (20 drops) were added to 100 mL acetonitrile. The mixture was refluxed for 20 h . The solvent was then removed and the residue was purified by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}(10: 1, v / v)$ as eluent to give CPC ($0.33 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm}$: $7.26-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.91(\mathrm{~m}, 22 \mathrm{H}), 7.92-8.03(\mathrm{~m}, 4 \mathrm{H})$, 8.21-8.31 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta \mathrm{ppm}$: $163.19,148.02,141.67,140.95,140.56,140.02,139.94$, $138.79,137.39,136.63,136.36,132.00,131.64,130.18$, $130.12,128.65,128.47,127.39,126.81,126.52,126.42$, 126.27, 122.78, 120.51, 120.11, 118.64, 109.66; IR (KBr) v : $3424,3049,2217,1624,1597,1513,1478,1451,1391$, 1363, 1334, 1314, 1228, 1191, 1171, 835, 817, 750, $723 \mathrm{~cm}^{-1}$; MS (FAB) calc. for $\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}$ 758, found 758; Anal. Calc. for $\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 85.58 , H 4.65, N 5.54. Found: C 85.62, H 4.41, N 5.67.

Results and discussion

Synthesis

The two cinnamic acid derivatives were prepared according to the synthesis route shown in Scheme 1. CPC was synthesized according to our previous procedure [13]. The new compound, CPA, was prepared with 3 and ethyl 2-(diethoxyphosphoryl)acetate by Wittig-Horner reaction. From Scheme 1, we can see that CPA has a similar chemical structure to CPC, except that the H in CPA is replaced by a cyano group in CPC. Both structures include the dicarbazol-triphenylehtylene moiety, which provides the unique AIE feature [11].

Responses to solvents

To study the responses of CPA and CPC to solvents, the UV and photoluminescence (PL) spectra (Fig. 1S, 2S, in the Supplementary Information) of the compounds were measured in five common solvents at the same concentration $\left(10^{-5} \mathrm{M}\right)$, as summarized in Table 1. Table 1 shows that the

Scheme 1 Synthetic routes of CPC and CPA

optical properties of both CPA and CPC did not monotonically change with increasing solvent polarity (polarity order: methylene chloride (MC) < tetrahydrofuran (THF) < dioxane (DX) < N,N-dimethyl formamide (DMF) < dimethyl sulfoxide (DMSO)) due to the existence of H-bond interactions between the compounds and the solvents, except MC. The maximum emission wavelengths for CPA and CPC shifted from 463 nm (in DX) to 486 nm (in MC) and from 474 nm (in DMF) to 547 nm (in MC), respectively. The carboxylic acid moiety must play an important role in these phenomena due to the carboxyl groups being capable of forming hydrogen bonds (H -bonds) with solvent molecules. Although the solvent responses were quite different, both of the compounds exhibited the strongest emission in DX and the most red-shifted emission in MC. It is known that MC
cannot form hydrogen bonds with carboxylic acids, thus, it is possible that the carboxylic acid moieties form molecular associations through intermolecular hydrogen bonding interactions and may be responsible for the red-shift in emission wavelength.

Responses to water
CPA and CPC showed interesting responsive sensitivities when water was added into their solutions in DMF (Fig. 3S, in the Supplementary Information). PL emission wavelengths and fluorescence images of the solutions with different water fractions ($\mathrm{V}_{\mathrm{H} 2 \mathrm{O}} \%$) are shown in Figs. 1 and 2, respectively. As $\mathrm{V}_{\mathrm{H} 2 \mathrm{O}} \%$ increased, the changes in PL emission wavelength exhibited a 3 -step (redshift-blueshift-

Table 1 Optical properties of CPA/CPC in different solvents

[^1]| | $\lambda_{\text {max }}^{a b s}(\mathrm{~nm})$ | | $\lambda_{\text {max }}^{e m}(\mathrm{~nm})$ | | PL(a.u.) | | $\lambda_{\text {max }}^{e x}(\mathrm{~nm})$ | | $\Phi_{\mathrm{FL}}{ }^{\text {a }}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | CPA | CPC |
| MC | 343 | 373 | 486 | 547 | 90 | 292 | 377 | 397 | 2.1 | 6.6 |
| THF | 342 | 367 | 466 | 495 | 78 | 297 | 376 | 382 | 1.6 | 5.3 |
| DX | 340 | 370 | 463 | 506 | 164 | 954 | 377 | 398 | 2.9 | 11 |
| DMF | 344 | 361 | 478 | 474 | 125 | 44 | 377 | 383 | 2.1 | 1.1 |
| DMSO | 344 | 364 | 471 | 489 | 136 | 133 | 378 | 383 | 3.1 | 2.7 |

Fig. 1 PL emission wavelength of CPA and CPC $(50 \mu \mathrm{M})$ in DMF with different $\mathrm{H}_{2} \mathrm{O}$ fractions
redshift) or a 4-step (blueshift-redshift-blueshift-redshift) process for CPA and CPC, respectively. The fluorescent responsive behaviors of CPA and CPC, with rich color changes in DMF and water mixtures, were probably caused by the synergistic interaction between the compound molecules and the media, such as the H -bond effect, the effect of molecular associations with carboxylic acids and the AIE effect. These results suggest that the compounds are potential materials for use as probes to detect intermolecular interactions.

Responses to concentrations
It is well known that two carboxylic groups can be connected by hydrogen bonds to form dimers, trimers and so on, up to multimers (commonly called a molecular

Fig. 2 Photographs of CPA (top) and CPC (bottom) ($50 \mu \mathrm{M}$) in DMF with different $\mathrm{H}_{2} \mathrm{O}$ fractions
association). To experimentally verify the existence of molecular associations with carboxylic acid, absorption, emission and excitation spectra of CPA and CPC were recorded at a wide range of concentrations in DMF solutions.

When investigating concentration responses on the fluorescence emission of CPA and CPC in DMF solutions, a remarkable modification in the fluorescence spectra was observed as the concentration increased (Fig. 3 and Fig. 4S, 5 S in the Supplementary Information), while the wavelength of UV absorption (Fig. 6S, in the Supplementary Information) changed very little. As the concentration of CPC increased from 0.001 mM to 0.1 mM , there was larger red shift ($\sim 50 \mathrm{~nm}$, from 472 nm to 526 nm) in the maxima emission wavelength than that of CPA ($\sim 13 \mathrm{~nm}$, from 468 nm to 481 nm). It is clear that both compounds gave a sensitive response to concentration in this concentration range and that CPC is more sensitive than CPA. The emission wavelength showed almost no change for CPA when the concentration was higher than 0.1 mM . However, for $\mathbf{C P C}$, the wavelength gradually increased with concen-

Fig. 3 PL emission spectra of CPA (top) and CPC (bottom) in DMF at different concentrations
tration over the entire concentration range. From the excitation spectra (Fig. 4), it can be clearly seen that new peaks appeared around $450-500 \mathrm{~nm}$ when the concentration of CPC was increased above 0.06 mM . However, no new peaks appeared for CPA. These results imply that the cyano group or the cyanoacrylic acid moiety in CPC plays an important role.

It is well known that the emission wavelength of a fluorescent molecule is independent of excitation wavelength. Thus, it can be used for component qualitative analysis according to the emission spectra obtained at different excitation wavelengths. Figure 5 shows the excitation spectra and fluorescence emission spectra of CPA and CPC in DMF solution excited at different wavelengths. The 0.1 mM solutions were excited by $398 \mathrm{~nm}, 410 \mathrm{~nm}$ and 435 nm and the 0.08 mM solutions were excited by $402 \mathrm{~nm}, 410 \mathrm{~nm}$ and 435 nm , respectively.

Fig. 4 Excitation spectra of CPA and CPC in DMF at different concentrations

Fig. 5 PL excitation and emission spectra of CPA and CPC in DMF ($c=0.1 \mathrm{mM}$ and 0.08 mM) by different excited wavelengths

Although the CPA solutions were excited by different wavelengths, the maximum emission wavelengths were the same, 480 nm , which indicated that a single fluorescentemitting component was present at concentrations of either 0.1 mM or 0.08 mM . It can be also seen that the shapes of the two excitation spectra were identical. However, for CPC solutions, the maximum emission wavelengths obtained under different excited wavelengths were different. For 0.1 mM solution, under excitation at $398 \mathrm{~nm}, 410 \mathrm{~nm}$ and 435 nm , the maximum emission wavelengths obtained were $517 \mathrm{~nm}, 520 \mathrm{~nm}$ and 528 nm . For 0.08 mM solutions, under excitation at $402 \mathrm{~nm}, 410 \mathrm{~nm}$ and 435 nm , they were 498 nm , 497 nm and 518 nm , respectively. On the other hand, the shapes of the two excitation spectra were different. It can be seen that new weak peaks at $\sim 480 \mathrm{~nm}$ appeared in the excitation spectrum of the 0.1 mM solution. The results indicate that the fluorescent-emitting component was not unique and it was thought that there existed various molecular associations of carboxylic acids (dimers, trimers,..., multimers or mixtures) in the solution.

Fig. $6{ }^{1} \mathrm{H}$-NMR of CPA and CPC in CDCl_{3} at different concentrations

Figure 6 shows the ${ }^{1} \mathrm{H}$-NMR spectra of the compounds in CDCl_{3} at different concentrations $(c=5,0.5$ and 0.05 mM). As the concentration increased, fine ${ }^{1} \mathrm{H}-\mathrm{NMR}$ structures of CPA could still be observed. However, the 5 mM solution of CPC did not present a fine ${ }^{1} \mathrm{H}-\mathrm{NMR}$

Fig. 7 PL wavelength changes of CPA and CPC in DMF $(50 \mu \mathrm{M})$ with metal ions 0.5 mM

Fig. 8 Photographs of CPA (top) and CPC (bottom) $(50 \mu \mathrm{M})$ in DMF with 0.5 mM metal ions

Fig. 9 Plot of $\log \left[\left(\mathrm{I}_{0}-\mathrm{I}\right) / \mathrm{I}\right]$ vs $\log \mathrm{C}$ for different metal ions added into CPA and CPC $(50 \mu \mathrm{M})$ in DMF

Table 2 The parameters of $\mathbf{C P A} / \mathbf{C P C}$ with different metal ions obtained from the fluorescent static quenching mechanism

Ion	$\mathrm{K}_{\mathrm{a}}\left(\mathrm{M}^{-1}\right)$		n		R^{2}	
	CPA	CPC	CPA	CPC	CPA	CPC
Zn^{2+}	5.39×10^{2}	51	0.82	0.51	0.952	0.995
Cu^{2+}	2.97×10^{4}	148	0.98	0.66	0.988	0.998
Ni^{2+}	4.21×10^{3}	117	0.90	0.51	0.996	0.987
Co^{2+}	9.90×10^{3}	224	0.87	0.56	0.991	0.998
Mn^{2+}	1.47×10^{5}	123	1.21	0.49	0.996	0.996
K^{+}	9.22×10^{2}	1.82×10^{4}	0.84	0.90	0.958	0.997

spectrum. These different ${ }^{1} \mathrm{H}-\mathrm{NMR}$ behaviors are thought to be related to the different chemical structures of the compounds in solution. It is well known that the introduction of a cyano group can significantly increase intermolecular interactions because of its high polarity and ability of form hydrogen bonds. Therefore, it is possible that the intermolecular interactions of CPC are much stronger than those of CPA, which promotes molecular association through intermolecular hydrogen bonding to form multimers.

Responses to metal ions
We also investigated the response behaviors of CPA and CPC towards various metal ions in acetate form. As shown in Figs. 7 and 7S (in the Supplementary Information), a blue shift with CPA was observed upon addition of Zn^{2+}, $\mathrm{Cu}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Co}^{2+}, \mathrm{Mn}^{2+}$ and K^{+}. However, for CPC, a red shift of about 21 nm occurred on addition of Zn^{2+}. Clearly,
among these metal ions, the responsive behavior of CPC for Zn^{2+} is an exceptional case, probably due to its atomic orbital configuration. It can be seen clearly that CPC and CPA are particularly sensitive to K^{+}and Mn^{2+}, respectively. It is very clear that simple modification of the substituent groups of the cinnamic acid derivatives containing carbazolyl triphenylethylene can dramatically influence their response behaviors. Figure 8 shows photographs of the solution of CPA-metal ion or CPC-metal ion under irradiation at 365 nm .

As shown in Fig. 8S (in the Supplementary Information), fluorescence quenching was observed for CPA and CPC upon addition of the above metal ions. The following equation has often been used to describe the static quenching mechanism, with good linearity [14]:
$\log \left[\left(\mathrm{I}_{0}-\mathrm{I}\right) / \mathrm{I}\right]=\log \mathrm{K}_{\mathrm{a}}+\mathrm{n} \log \mathrm{C}$
Where \log is the common logarithm, C is the concentration of metal ion in the mixture system, I_{0} is the PL intensity of the CPC in DMF solution without metal ion, I is the PL intensity of the system while the concentration of metal ion is $\mathrm{C}, \mathrm{K}_{\mathrm{a}}$ is the association constant and n is the association ratio.

As seen in Fig. 9, a good linearity between $\log \left[\left(\mathrm{I}_{0}-\mathrm{I}\right) / \mathrm{I}\right]$ and the logarithm of the concentration of metal ion (C) (linear correlation coefficient $\mathrm{R}^{2}: 0.995-0.998$ for CPC, and 0.952-0.996 for CPA, respectively) was constructed. The parameters were listed in Table 2. According to the above equation, the association ratio (n) of $\mathrm{Zn}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Co}^{2+}$ and Mn^{2+} with CPC was obtained from 0.49 to 0.66 and thus the stoichiometric ratio between CPC and these metal ions was $1: 2$. However, for $\mathrm{K}^{+} \mathrm{n}$ was 0.9 , giving a $1: 1$ stoichiometric ratio between $\mathbf{C P C}$ and K^{+}. The association constant, K_{a}, for K^{+}was $1.82 \times 10^{4} \mathrm{M}^{-1}$, the highest amongst

Fig. 10 Calculated spatial distributions of LUMO and HOMO of CPA and CPC

all the metal ions studied here. In contrast, for CPA, n was in the range $0.82-1.21$, thus the stoichiometric ratio between CPA and these metal ions was $1: 1 . \mathrm{K}_{\mathrm{a}}$ for Mn^{2+} was the highest amongst the metal ions.

Molecular energy levels of the compounds
To better understand the structure-property relationships of the two derivatives, it would be very helpful to study their molecular energy levels and electronic structures. The lowest unoccupied molecular orbital/highest occupied molecular orbital (LUMO/HOMO) energy gaps ($\Delta E g$)for CPA and CPC were estimated from the onset absorption wavelengths of UV absorption spectra and were 2.98 eV and 2.75 eV , respectively. The HOMO energy levels of the two derivatives were obtained using the onset oxidation potentials from cyclic voltammetry (CV) curves and the HOMO values of CPA and CPC were 5.59 eV and 5.52 eV , respectively. Thus, the LUMO energy levels of CPA and CPC were 2.61 eV and 2.77 eV , respectively. From the energy levels, it could be seen that CPC exhibited lower band gap and higher LUMO than CPA, which might result in essential differences in responsive behaviors to solvents, water and metal ions between the two derivatives. To gain insight as to why the two derivatives exhibited the differences in energy levels, we obtained their HOMOs and LUMOs based on B3LYP/ 6-31G(d) calculations [15] (Fig. 10). The calculation results showed that the majority of the electron distribution of the HOMO was located on the carbazolyl triphenylethylene moiety, and the LUMO distribution resided on the cinnamic acid moiety. The electron distribution of the HOMOs of the two compounds were very similar to each other. However, due to the effect of cyano group (CN), the electron of the LUMO of CPC distributed much more concentrated on the cinnamic acid moiety. From Fig. 10, we could also see that there existed antibonding repulsion between p-orbitals in CN and $\mathrm{C}=$ C, which caused CPC to be high LUMO energy level.

Conclusions

Two fluorescent compounds, CPA and CPC, were synthesized, possessing AIE effects and interesting fluorescence responses to solvents, water, and metal ions. The response behaviors of the compounds are different due to the difference of their chemical structures. It was found that CPC exhibits high sensitivity to K^{+}and a different response to Zn^{2+}. It is therefore clear that simple modification of the substituent group of the cinnamic acid derivatives containing carbazolyl triphenylethylene can dramatically influence their response behaviors.

Acknowledgements The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant numbers: 50773096, 50473020), the Start-up Fund for Recruiting Professionals from "985 Project" of SYSU, the Science and Technology Planning Project of Guangdong Province, China (Grant numbers: 2007A010500001-2), Construction Project for University-Industry cooperation platform for Flat Panel Display from The Commission of Economy and Informatization of Guangdong Province (Grant numbers: 20081203), and the Open Research Fund of State Key Laboratory of Optoelectronic Materials and Technologies.

References

1. Amendola V, Fabbrizzi L, Licchelli M, Mangano C, Pallavicini P, Parodi L, Poggi A (1999) Molecular events switched by transition metals. Coord Chem Rev 190-192:649-669
2. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515-1566
3. Wiegmann TB, Welling LW, Beatty DM, Howard DE, Vamos S, Morris JA (1993) Simultaneous imaging of intracellular $\left[\mathrm{Ca}^{2+}\right]$ and pH in single MDCK and glomerular epithelial cells. J Physiol 265:C1184-C1190
4. Salvador JM, Inesi G, Rigaud JL, Mata AM (1998) Ca^{2+} transport by reconstituted synaptosomal ATPase is associated with H^{+} countertransport and net charge displacement. J Biol Chem 273:18230-18234
5. Vo-Dinh T, Viallet P, Ramirez L, Pal A, Vigo J (1994) Detection of cadmium ion using the fluorescence probe Indo-1. Anal Chim Acta 295:67-72
6. Hirshfeld KM, Toptygin D, Grandhige G, Packard BZ, Brand L (1998) A nanosecond fluorescence study of the simultaneous influx of Ca^{2+} and Cd^{2+} into liposomes. Biophys Chem 71:63-72
7. Yuasa J, Fukuzumi S (2006) An Off-On fluorescence sensor for metal ions in stepwise complex formation of 2, 3, 5, 6-tetrakis(2pyridyl)pyrazine with metal ions. J Am Chem Soc 128:15976-15977
8. Liu JZ, Lam JWY, Tang BZ (2009) Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet Polym 19:249-285
9. Dong Y, Lam JWY, Qin A, Li Z, Liu J, Sun J, Dong Y, Tang B (2007) Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core. Chem Phys Lett 446:124-127
10. Wang M, Zhang D, Zhang G, Tang Y, Wang S, Zhu D (2008) Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole. Anal Chem 80:6443-6448
11. Yang Z, Chi Z, Yu T, Zhang X, Chen M, Xu B, Liu S, Zhang Y, Xu J (2009) Triphenylethylene carbazole derivatives as a new class of AIE materials with strong blue light emission and high glass transition temperature. J Mater Chem 19:5541-5546
12. Xu B, Chi Z, Yang Z, Chen J, Deng S, Li H, Li X, Zhang Y, Xu N, Xu J (2010) Facile synthesis of a new class of aggregationinduced emission materials derived from triphenylethylene. J Mater Chem. doi:10.1039/C0JM00229A
13. Zhang X, Yang Z, Chi Z, Chen M, Xu B, Wang C, Liu S, Zhang Y, Xu J (2010) A multi-sensing fluorescent compound derived from cyanoacrylic acid. J Mater Chem 20:292-298
14. Feng X, Bai C, Lin Z, Wang N, Wang C (1998) The interaction between acridine orange and bovine serum albumin. Chin J Anal Chem 26:154-157
15. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03. Revision D.01. Gaussian, Inc, Wallingford

[^0]: X.-q. Zhang • Z.-g. Chi (\triangle) • B.-j. Xu • H.-y. Li \cdot W. Zhou • X.-f. Li \cdot Y. Zhang \cdot S.-w. Liu \cdot J.-r. Xu (\triangle)

 PCFM Lab, DSAPM Lab, FCM Institute, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
 e-mail: chizhg@mail.sysu.edu.cn
 e-mail: xjr@mail.sysu.edu.cn

[^1]: ${ }^{\text {a }}$ Quantum yields (Φ_{FL}) were calculated on the basis of 9,10diphenylanthracene as standard

